The 7 Pillars of Electronic System Design

The ever-increasing pace of innovation in the electronics industry has pushed manufacturers to explore modern approaches to electronic system design to gain a competitive edge. Simulation-driven design holds great promise for delivering smarter products, shortening time to market, and enhancing product design, but it can be difficult to identify a clear roadmap to fully leverage the benefits of this digital approach to product development.

To begin implementing a more comprehensive simulation-driven approach, manufacturers should start with the fundamentals. There are seven key building blocks that make up the electronic system design process: electronics, electrical, mechanical, thermal, mechatronics, circuit, and code.

Each of these technology pillars serve an important purpose in the form and function of modern electronics, and modeling and simulation tools within each discipline help streamline design and development workflows and reduce reliance on time-consuming physical validation testing. Equally important is ensuring that the data and analysis developed within each pillar can be readily shared across disciplines to drive a more effective holistic design.

Altair brings a simulation-driven design philosophy to the electronics industry. Its new electronic system design toolset enables engineers to accelerate a variety of applications, from more efficient printed circuit board (PCB) design review, verification, analysis, and manufacture to the design of motors, sensors, and actuators with simulation.

Read the full article here.